Antagonistic controls of autophagy and glycogen accumulation by Snf1p, the yeast homolog of AMP-activated protein kinase, and the cyclin-dependent kinase Pho85p.
نویسندگان
چکیده
In the yeast Saccharomyces cerevisiae, glycogen is accumulated as a carbohydrate reserve when cells are deprived of nutrients. Yeast mutated in SNF1, a gene encoding a protein kinase required for glucose derepression, has diminished glycogen accumulation and concomitant inactivation of glycogen synthase. Restoration of synthesis in an snf1 strain results only in transient glycogen accumulation, implying the existence of other SNF1-dependent controls of glycogen storage. A genetic screen revealed that two genes involved in autophagy, APG1 and APG13, may be regulated by SNF1. Increased autophagic activity was observed in wild-type cells entering the stationary phase, but this induction was impaired in an snf1 strain. Mutants defective for autophagy were able to synthesize glycogen upon approaching the stationary phase, but were unable to maintain their glycogen stores, because subsequent synthesis was impaired and degradation by phosphorylase, Gph1p, was enhanced. Thus, deletion of GPH1 partially reversed the loss of glycogen accumulation in autophagy mutants. Loss of the vacuolar glucosidase, SGA1, also protected glycogen stores, but only very late in the stationary phase. Gph1p and Sga1p may therefore degrade physically distinct pools of glycogen. Pho85p is a cyclin-dependent protein kinase that antagonizes SNF1 control of glycogen synthesis. Induction of autophagy in pho85 mutants entering the stationary phase was exaggerated compared to the level in wild-type cells, but was blocked in apg1 pho85 mutants. We propose that Snf1p and Pho85p are, respectively, positive and negative regulators of autophagy, probably via Apg1 and/or Apg13. Defective glycogen storage in snf1 cells can be attributed to both defective synthesis upon entry into stationary phase and impaired maintenance of glycogen levels caused by the lack of autophagy.
منابع مشابه
Systematic identification of the genes affecting glycogen storage in the yeast Saccharomyces cerevisiae: implication of the vacuole as a determinant of glycogen level.
At the onset of nutrient limitation, the yeast Saccharomyces cerevisiae synthesizes glycogen to serve as a carbon and energy reserve. We undertook a systematic survey for the genes that affect glycogen accumulation by taking advantage of the strain deletion set generated by the Saccharomyces Genome Deletion Project. The strain collection analyzed contained some 4600 diploid homozygous null dele...
متن کاملSystematic Identification of the Genes Affecting Glycogen Storage in the Yeast Saccharomyces cerevisiae IMPLICATION OF THE VACUOLE AS A DETERMINANT OF GLYCOGEN LEVEL*□S
At the onset of nutrient limitation, the yeast Saccharomyces cerevisiae synthesizes glycogen to serve as a carbon and energy reserve. We undertook a systematic survey for the genes that affect glycogen accumulation by taking advantage of the strain deletion set generated by the Saccharomyces Genome Deletion Project. The strain collection analyzed contained some 4600 diploid homozygous null dele...
متن کاملNutrient-Regulated Protein Kinases in Budding Yeast
The ability of cells to react appropriately to nutritional cues is of fundamental importance, and in budding yeast, a small number of intracellular protein kinases, PKA, Snf1p/AMP-activated kinase, TOR, Gcn2p, and the cyclin-dependent kinase Pho85p have key roles. A recently characterized enzyme, PAS kinase, may be a new member of this group of nutritional transducers.
متن کاملRegulation of autophagy by AMP-activated protein kinase/ sirtuin 1 pathway reduces spinal cord neurons damage
Objective(s): AMP-activated protein kinase/sirtuin 1 (AMPK/SIRT1) signaling pathway has been proved to be involved in the regulation of autophagy in various models. The aim of this study was to evaluate the effect of AMPK/SIRT1 pathway on autophagy after spinal cord injury (SCI). Materials and Methods:The SCI model was established in rats in vivo and the primary spinal cord neurons were subject...
متن کاملAnalysis of respiratory mutants reveals new aspects of the control of glycogen accumulation by the cyclin-dependent protein kinase Pho85p.
The PHO85 gene of Saccharomyces cerevisiae encodes a cyclin-dependent protein kinase that can interact with 10 different cyclins (Pcls). In conjunction with Pcl8p and Pcl10p, Pho85p phosphorylates and regulates glycogen synthase. Respiratory-deficient strains, such as coq3 mutants, have reduced glycogen stores and contain hyperphosphorylated and inactive glycogen synthase. We show here that pho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 21 17 شماره
صفحات -
تاریخ انتشار 2001